
1

A Brief Introduction to HPCToolkit

Keren Zhou

Department of Computer Science

Rice University

http://hpctoolkit.org

OpenMP Hackathon August 2019

2

Outline

• Overview of Rice’s HPCToolkit

• OpenMP issues

• Using HPCToolkit’s GUIs to analyze program performance

• Other capabilities

3

Rice University’s HPCToolkit

• Employs binary-level measurement and analysis

— observe fully optimized, dynamically linked executions

— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)

— controllable overhead

— minimize systematic error and avoid blind spots

— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics

— diagnosis often requires more than one species of metric

• Associates metrics with both static and dynamic context

— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis

— identify costs of interest and drill down to causes

– up and down call chains

– over time

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

4

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

5

• For dynamically-linked executables, e.g., Linux clusters

— compile and link as you usually do: nothing special needed

— For statically-linked executables (Cray default)

— add monitoring by using hpclink as prefix to your link line

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

Measure execution unobtrusively

— launch optimized application binaries

– dynamically-linked: launch with hpcrun, arguments control monitoring

– statically-linked: environment variables control monitoring

— collect statistical call path profiles of events of interest

6

Measure and attribute costs in context

sample timer or hardware counter overflows

gather calling context using stack unwinding

Call Path Profiling

7

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...

...not call frequency

Calling context tree

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure

— analyze machine code, line map, debugging information

— extract loop nests & identify inlined procedures

— map transformed loops and procedures to source

8

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

• Combine multiple profiles

— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

9

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

source

code

optimiz

ed

binary

compile & link call path

profile

profile

execution
[hpcrun]

binary

analysis
[hpcstruct]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

databa

se

presentation
[hpcviewer/

hpctraceviewer]

program

structure

HPCToolkit Workflow

• Presentation

— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important

– compute derived metrics to help gain insight

e.g. scalability losses, waste, CPI, bandwidth

— graph thread-level metrics for contexts

— explore evolution of behavior over time

10

Code-centric Analysis with hpcviewer

11

• function calls in full context

• inlined procedures

• inlined templates

• outlined OpenMP loops

• loops

source pane

navigation pane

metric pane

view control

metric display

• Profiling compresses out the temporal dimension

—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples

—sketch:

– N times per second, take a call path sample of each thread

– organize the samples for each thread along a time line

– view how the execution evolves left to right

– what do we view?

assign each procedure a color; view a depth slice of an execution

12

Understanding Temporal Behavior

Time

Processes

Call

stack

13

hpctraceviewer: detail of FLASH@256PE

Time-centric analysis: load imbalance among threads appears

as different lengths of colored bands along the x axis

OpenMP: A Challenge for Tools

• Runtime support is necessary for tools to bridge the gap

main→fn.0→fn.1

→fn.2

.

.

.

User-level calling context for

code in OpenMP parallel regions

and tasks executed by worker

threads is not readily available

• Large gap between between threaded programming models

and their implementations

14

Challenges for OpenMP Node Programs

• Tools provide implementation-level view of OpenMP threads

— asymmetric threads

– master thread

– worker thread

— run-time frames are interspersed with user code

• Hard to understand causes of idleness

— long serial sections

— load imbalance in parallel regions

— waiting for critical sections or locks

15

OMPT: An OpenMP Tools API

• Goal: a standardized tool interface for OpenMP

— prerequisite for portable tools

— missing piece of the OpenMP language standard

• Design objectives

— enable tools to measure and attribute costs to application source

and runtime system

• support low-overhead tools based on asynchronous sampling

• attribute to user-level calling contexts

• associate a thread’s activity at any point with a descriptive state

— minimize overhead if OMPT interface is not in use

• features that may increase overhead are optional

— define interface for trace-based performance tools

— don’t impose an unreasonable development burden

• runtime implementers

• tool developers

16

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

source view

thread view

metric view

17

OpenMP Tool API Status

• HPCToolkit supports OpenMP 5.0 OMPT

• OMPT prototype implementations

—LLVM (emerging: OpenMP 5.0)

– interoperable with GNU, Intel compilers

—IBM LOMP (currently targets OpenMP 4.5)

• Ongoing work

—refining OpenMP 5.0 OMPT support in LLVM OpenMP

—refining OpenMP 5.0 OMPT support in HPCToolkit

– asynchronous call stack assembly for lightweight monitoring

18

HPCToolkit Capabilities for GPU Code

MPI + OpenMP 4.5 or CUDA GPU accelerated applications

19

Other Capabilities

• Measure hardware counters using Linux perf_events

—available events can be listed with

– hpcrun -L

– launching a binary created by hpclink with environment setting

HPCRUN_EVENT_LIST=LIST

—frequency based sampling: 300/s per thread or machine max

– no need to set periods or frequencies unless you want precise control

—hardware event multiplexing

– measure more events than hardware counters

• Kernel sampling

—measure activity in the Linux kernel in addition to your program

– e.g., allocating and clearing memory pages

—not available on BG/Q

—measurement and attribution subject to system permissions

– detailed attribution not available on NERSC or ANL systems
20

HPCToolkit at NERSC

• NERSC cori

— a setup script or a set of module loads

— source /global/cscratch1/sd/kz21/env-static.sh

— source /global/cscratch1/sd/kz21/env-shared.sh

• Man pages

— automatically added to MANPATH by the aforementioned

command

21

HPCToolkit at ORNL

• On Summit

— module use /gpfs/alpine/csc322/world-shared/modulefiles

— module load hpctoolkit

• Man pages

— automatically added to MANPATH by the aforementioned

command

22

GUIs for your Laptop

• Download binary packages for HPCToolkit’s user interfaces

on your laptop

— http://hpctoolkit.org/download/hpcviewer

23

http://hpctoolkit.org/download/hpcviewer

Detailed HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

• Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

— Quick start guide

– essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs

– a guide for using hpctoolkit on BG/Q and Cray platforms

— The hpcviewer and hpctraceviewer user interfaces

— Effective strategies for analyzing program performance with

HPCToolkit

– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI

— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?

– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide

24

Advice for Using HPCToolkit

25

Using HPCToolkit

• Add hpctoolkit’s bin directory to your path using softenv

• Adjust your compiler flags (if you want full attribution to src)

— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line

— e.g. hpclink CC -o myapp foo.o ... lib.a -lm ...

• See what sampling triggers are available on Cray

— use hpclink to link your executable

— launch executable with environment variable

HPCRUN_EVENT_LIST=LIST

– you can launch this on 1 core of 1 node

– no need to provide arguments or input files for your program

they will be ignored

26

Monitoring Large Executions

• Collecting performance data on every node is typically not

necessary

• Can improve scalability of data collection by recording data

for only a fraction of processes

— set environment variable HPCRUN_PROCESS_FRACTION

— e.g. collect data for 10% of your processes

– set environment variable HPCRUN_PROCESS_FRACTION=0.10

27

Digesting your Performance Data

• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct your_app

– creates your_app.hpcstruct

• Correlate measurements to source code with hpcprof and hpcprof-

mpi

— run hpcprof on the front-end to analyze data from small runs

— run hpcprof-mpi on the compute nodes to analyze data from lots of

nodes/threads in parallel

– notes

much faster to do this on an x86_64 vis cluster (cooley) than on BG/Q

avoid expensive per-thread profiles with --metric-db no

• Digesting performance data in parallel with hpcprof-mpi

— qsub -A ... -t 20 -n 32 --mode c1 --proccount 32 --cwd `pwd` \

/projects/Tools/hpctoolkit/pkgs-vesta/hpctoolkit/bin/hpcprof-mpi \

-S your_app.hpcstruct \

-I /path/to/your_app/src/+ \

hpctoolkit-your_app-measurements.jobid

28

Analysis and Visualization

• Use hpcviewer to open resulting database

— warning: first time you graph any data, it will pause to combine

info from all threads into one file

• Use hpctraceviewer to explore traces

— warning: first time you open a trace database, the viewer will

pause to combine info from all threads into one file

• Try our our user interfaces before collecting your own data

— example performance data

http://hpctoolkit.org/examples.html

29

Installing HPCToolkit GUIs on your Laptop

• See http://hpctoolkit.org/download/hpcviewer

• Download the latest for your laptop (Linux, Mac, Windows)

• hpctraceviewer

• hpcviewer

30

A Note for Mac Users

When installing HPCToolkit GUIs on your Mac laptop, don’t

simply download and double click on the zip file and have

Finder unpack them. Follow the Terminal-based installation

directions on the website to avoid interference by Mac

Security.

